Course
University-wide Education Program
Faculty・Graduate School
Information Science and Technology (49)
Semester
Period
Day of the week
Language
Japanese (9)
English (49)
Lecturers with
practical experience
About course catalogue About course catalogue
JP EN
Course
University-wide Education Program
Faculty・Graduate School
Information Science and Technology (49)
Semester
Period
Day of the week
Language
Japanese (9)
English (49)
Lecturers with
practical experience
HOME Results
The URLs, account and classroom informations have been removed to prevent the leakage of internal information for online classes.
Last updated at Oct 18, 2024.

Class plans and classrooms are subject to change, so be sure to check UTAS for the latest information.
If you do not have access to the UTAS, please contact your instructor or academic affairs office.
Introduction to Near-Term Quantum Computation
Detail MIMA Search
The goal of this course is to learn how to implement utility-scale applications on a quantum computer. To achieve the goal, the course covers from the basics of quantum information to recent advances of quantum algorithms for noisy quantum devices as well as circuit optimization and error mitigation techniques. The course also introduces how to implement quantum algorithms using open-source framework of quantum computing and real quantum device with more than 100 qubits. The course is intended to help students understand the potential and limitations of currently available quantum devices.
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1166
GIF-CS5044L3
Introduction to Near-Term Quantum Computation
Tamiya Onodera
S1 S2
Fri 5th
Add to My List
Remove from My List
Academic Writing in English
Detail MIMA Search
This class will teach you how to plan and do research in Computer Science, as well as how to structure and write a research paper for publication in English-language conference proceedings and journals. In particular, we will look at how planning and performing your research affects how you should structure and write your paper and why considering both together early on can make both tasks easier. We will discuss how to increase your chances of acceptance and how to improve your paper based on feedback and formal reviews. The class assumes proficiency in English reading and writing. It does not aim to be an English language class. Moreover, improvement in writing comes from actually writing, so the course will have a significant in-class practical aspect: students should be prepared to write and discuss their work in-class and in English. The class will be useful for computer science students and researchers, whether native English speakers or not, who have possibly read many research papers in their field but never written one themselves. The class will be particularly beneficial for students who have already started to do research or at least know in which area they plan to do research.
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1170
GIF-CS5801L3
Academic Writing in English
Whittaker Edward William Daniel
A1 A2
Tue 4th
Add to My List
Remove from My List
Practical English Presentation Skill I
Detail MIMA Search
本講義には、英語で学術的なプレセンテーションのやり方について議論する。コンピュータ科学専攻修士課程入学者が原則的に履修する必要である。 We will discuss how to make an academic presentation during this course. This course is a mandatory course for all master students at Department of Computer Science.
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1171
GIF-CS5802S3
Practical English Presentation Skill I
Suppakitpaisarn Vorapong
S1 S2
Sat
Add to My List
Remove from My List
Approximation and Online Algorithms with Applications
Detail MIMA Search
In this class, we discuss basic concepts in algorithmics such as NP-hardness, approximation algorithms, and online algorithms. Then, we give examples how to apply them to practical research. At the end of this class, students who are not familiar with these theoretical concepts are expected to learn their importance in practical point of views. On the other hands, students who are familiar with them are expected to gain more experiences on applying the concepts to practical settings. 本講義では、NP困難、近似アルゴリズム、オンラインアルゴリズムなどアルゴリズムを解析する理論の概要を説明し、機械学習や データベースなど応用分野に適用する事例を挙げる。 アルゴリズム論を勉強したことがない学生には理論的な解析の重要性を実感させ、勉強したことがある学生にはアルゴリズム論の応用を経験させることを目的としている。
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1183
GIF-CS5054L3
Approximation and Online Algorithms with Applications
Suppakitpaisarn Vorapong
S1 S2
Mon 5th
Add to My List
Remove from My List
Network Optimizations
Detail MIMA Search
During this class, we discuss fundamental and state-of-the-art research results on network optimization. The class covers results on sensor networks and social networks. Network design algorithms and efficient algorithms for networks with several million nodes are also discussed during the class. 通信ネットワーク、センサーネットワークやソーシャルネットワークの効率を最適化するアルゴリズムを、基礎から最近の研究成果まで議論する講義である。ネットワークデサインアルゴリズムや数千万ノードがある巨大ネットワークを高速に最適化できるアルゴリズムも議論する。
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1185
GIF-CS5056L3
Network Optimizations
Suppakitpaisarn Vorapong
A1 A2
Mon 3rd
Add to My List
Remove from My List
Advanced Custom Computing
Detail MIMA Search
コンピュータシステムの更なる高性能化・効率化のためには、アプリケーションドメインに特化したハードウェアおよびソフトウェアを活用するカスタムコンピューティングが重要である。本講義では、カスタムコンピューティングを行う際に必要となるコンピュータアーキテクチャに関する知識と、高度なアプリケーションを実現するためのハードウェア、ソフトウェア、アルゴリズムに関する技術を、アクセラレータ・ハードウェア開発を通じて習得する。 Custom computing, which effectively utilizes domain-specific hardware and software, is a crucial approach for further performance and efficiency improvements of computer systems. In this lecture, you will learn the fundamental knowledge of computer architecture for custom computing. You will then earn various hardware, software, and system-aware algorithm techniques for realizing advanced applications via the development of an accelerator hardware.
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1190
GIF-CS5094L3
Advanced Custom Computing
Takamaeda Shinya
A1 A2
Thu 2nd
Add to My List
Remove from My List
Remote Sensing Image Analysis
Detail MIMA Search
リモートセンシング画像解析の基礎と最新動向を学ぶことを目的とする /Learn the basics and latest trends of remote sensing image analysis
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1191
GIF-CS5095L3
Remote Sensing Image Analysis
YOKOYA Naoto
A1 A2
Mon 4th
Add to My List
Remove from My List
Trustworthiness Assurance for Data-Driven AI Software Systems
Detail MIMA Search
過去数十年にわたり、機械学習及び深層学習を基盤としたAIソフトウェアシステムは、多岐にわたる産業領域において顕著な性能向上を達成してきた。今日、これらのデータ駆動型のAIソフトウェアシステムの信頼性の確保は、世界的な緊急課題として、社会的な関心及び期待に応える重要性を増している。本講義では、高品質で安全且つ信頼性の高いAIソフトウェアシステムに対する需要の高まりを背景に、データ駆動型のAIソフトウェアシステムの信頼性確保に関する最先端の研究動向を紹介する。さらに、機械学習と深層学習工学の一般的なAIモデル及びシステムのデータ駆動方や不透明性に起因する複雑な課題に対処するための方法を議論する。これにより、知的かつ信頼性の高い、安全で信頼できるAIシステムの開発への道筋が明らかになる。 Over the past decades, machine learning and deep learning-based AI software achieved performance leap in many application domains. Nowadays trustworthiness assurance of such data-centric AI software systems becomes crucial with urgent social concern and expectation worldwide. This course explores the forefront of Trustworthiness Assurance in Data-Driven AI Software Systems, an area garnering attention with the growing demand for high-quality, safe, and dependable AI software systems across various sectors. Participants will engage with the intricate challenges presented by the opaque nature of prevalent AI models and systems, particularly in machine learning and deep learning. By exploring contemporary failures and challenges, the course illuminates the path towards developing AI solutions that are not only intelligent but also reliable, safe, and trustworthy.
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1197
GIF-CS5101L2
Trustworthiness Assurance for Data-Driven AI Software Systems
A1 A2
Tue 3rd
Add to My List
Remove from My List
Special Lecture on Computer Science III
Detail MIMA Search
This course will provide several combinatorial optimization search techniques which are used in artificial intelligence (AI).
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1206
GIF-CS6075L3
Special Lecture on Computer Science III
CODOGNET Philippe
A1 A2
Thu 4th
Add to My List
Remove from My List
Special Lecture on Computational Science I
Detail MIMA Search
OpenMPは指示行を挿入するだけで手軽に「マルチスレッド並列化(multi-threading)」ができるため,マルチコアプロセッサ内の並列化に広く使用されている。本講義ではOpenMPによる並列化に関する講義・実習を実施する。本講義では対象アプリケーション(有限体積法(finite-volume method, FVM)によってポアソン方程式)をOpenMPによってマルチコアプロセッサ上で並列化するのに必要な計算手法,アルゴリズム,プログラミング手法の講義,実習の他,並列前処理手法の最新の研究に関する講義も実施する。プログラミング実習にはスーパーコンピュータシステム(Wisteria/BDEC-01(Odyssey))を使用する。 OpenMP is the most widely-used way for parallelization on each compute node with multiple cores because multi-threading can be done easily by just inserting "directives". In this class, lectures and exercises for parallelization by multi-threading of the target application (Poisson’s equation solver by FVM (finite-volume method)) on multicore processors using OpenMP are provided, which covers numerical algorithms, and programming methods. Moreover, lectures on recent research topics on parallel preconditioning methods will be also provided. The "Supercomputer System (Wisteria/BDEC-01(Odyssey))" is available for hands-on exercises.
Expand entries
Collapsed entries
Code
Course title
Lecturer
Semester
Period
4810-1215
GIF-CS6060L3
Special Lecture on Computational Science I
Kengo Nakajima
S1 S2
Wed 1st
Add to My List
Remove from My List
1 2 3 4 5

1-10 / 49 results