課程
横断型教育プログラム
共通授業科目
学部・研究科
学年
学期
時限
曜日
講義使用言語
実務経験のある教員による
授業科目
授業カタログとは 授業カタログとは
JP EN
課程
横断型教育プログラム
共通授業科目
学部・研究科
学年
学期
時限
曜日
講義使用言語
実務経験のある教員による
授業科目
HOME 検索結果
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年10月18日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。
確率過程論
詳細を見る MIMA Search
確率過程の中の重要なクラスであるマルチンゲールについて講義する。主に離散時間の場合を扱い,停止時刻と任意抽出定理,各種のマルチンゲール不等式,収束定理とこれらの応用について述べる。連続時間マルチンゲールにも簡単に触れ,その例としてブラウン運動やポアソン過程を取り上げる。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
45901-27
GMA-MA6543L1
確率過程論
佐々田 槙子
S1 S2
火曜3限
マイリストに追加
マイリストから削除
数理手法VI
詳細を見る MIMA Search
時間とともに変化する不確実な現象を記述し理解するには、確率過程論が重要な道具として用いられる。この講義では数理手法IVに続き、離散時間の確率過程論の講義を行った後、連続時間の確率過程の理論について講義を行う。また、ファイナンスへの応用として、ブラック・ショールズ・マートンによるオプション価格理論を扱う。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
FEN-CO3146L1
FEN-CO3146L1
数理手法VI
荻原 哲平
A1 A2
火曜5限
マイリストに追加
マイリストから削除
数理手法IV
詳細を見る MIMA Search
時間とともに変化する不確実な現象を記述し理解するには、確率過程論が重要な道具として用いられる。この講義では離散時間の確率過程論、特にマルチンゲール理論に関しての講義を行う。この講義では、測度論や積分論等の数学の専門的知識は前提とせず、とくに前半では確率空間が有限集合である場合を取り扱う。また、マルチンゲール理論のファイナンスへの簡易的な応用も扱う。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
FEN-CO3144L1
FEN-CO3144L1
数理手法IV
荻原 哲平
S1 S2
水曜5限
マイリストに追加
マイリストから削除
確率数理要論
詳細を見る MIMA Search
測度論的確率論・確率過程論の基礎を理解する。/ The goal of the course is to understand the basics of measure-theoretic probability and stochastic processes.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
4820-1024
GIF-MA5103L1
確率数理要論
松田 孟留
A1 A2
金曜2限
マイリストに追加
マイリストから削除
統計財務保険特論VI
詳細を見る MIMA Search
確率過程の統計学、保険数理、臨床統計では様々な確率過程がモデリングとデータ解析に用いられる。本講義では広範な応用を持つセミマルチンゲールに関して、基礎理論を解説する。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
45901-96
GMA-MA6X05L1
統計財務保険特論VI
吉田 朋広
A1 A2
木曜4限
マイリストに追加
マイリストから削除
解析数理要論
詳細を見る MIMA Search
数理情報学全般の基礎となる道具としての解析学、とくに、関数解析の基礎について講義する。問題演習も併せて行う。 An introduction of functional analysis as a fundamental tool of mathematical informatics is provided.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
4820-1023
GIF-MA5102L1
解析数理要論
松尾 宇泰
S1 S2
火曜2限
マイリストに追加
マイリストから削除
数理手法I
詳細を見る MIMA Search
自然科学・社会科学の分野を問わずデータの分析には、確率・統計的なアプローチが必要不可欠となっている。この授業では、データ分析に必要な確率・統計学の基礎知識を学習する。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
FEN-CO2141L1
FEN-CO2141L1
数理手法I
清 智也
A1 A2
水曜3限
マイリストに追加
マイリストから削除
数理手法VIII
詳細を見る MIMA Search
生物・経済・社会系など幅広い系に関する最近の data-driven な研究を紹介し、それらを理解するための関連の数理手法を解説する。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
FEN-CO2149L1
FEN-CO2149L1
数理手法VIII
島田 尚
A1 A2
水曜5限
マイリストに追加
マイリストから削除
数理手法II
詳細を見る MIMA Search
流体力学の基礎から応用について概説する。基本的な偏微分方程式を概説して、流体の運動を記述する基礎方程式であるNavier-Stokes方程式の導出を行う。次に、流体の乱流を取り上げ、層流からの遷移過程と発達した乱流の特性を、その渦構造を中心として示す。特に、乱流の制御手法の一つである高分子の添加を取り上げ、ベクトルの反変・共変性に着目した解析について講義を行い、熱対流との関連性に言及する。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
FEN-CO3142L1
FEN-CO3142L1
数理手法II
堀内 潔
A1 A2
水曜5限
マイリストに追加
マイリストから削除
数理手法III
詳細を見る MIMA Search
最適化とその応用について講述する.最適化(数理計画)とは,意思決定のための数理手法の一つである.最適化では,与えられた条件を満たす解のうち,ある関数を最小(または最大)にするものを求める.工学における多くの問題が,このような最適化問題として定式化できる.この講義では,最適化におけるいくつかの基本的な問題を取り上げ,それらがもつ性質と解法とを説明するとともに,それらの応用を紹介する.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
FEN-CO3143L1
FEN-CO3143L1
数理手法III
寒野 善博
A1 A2
水曜3限
マイリストに追加
マイリストから削除
1 2 3 4 5

1-10 / 全2060件