課程
横断型教育プログラム
共通授業科目
学部・研究科
学年
学期
時限
曜日
講義使用言語
実務経験のある教員による
授業科目
授業カタログとは 授業カタログとは
JP EN
課程
横断型教育プログラム
共通授業科目
学部・研究科
学年
学期
時限
曜日
講義使用言語
実務経験のある教員による
授業科目
HOME 検索結果
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年10月18日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。
文科系のための線形代数・解析Ⅱ
詳細を見る MIMA Search
「文科系のための線形代数・解析I」に引き続き、経済学や統計学、データ科学などにおいて必要とされる線形代数、解析の基礎を学ぶ。線形回帰、二変数関数の微積分、基本的な最適化手法などを理解し、簡単な問題に応用できるようになることを目標とする。講義とMATLABを用いた演習を並行して進めることで実践で役立つ理解を目指す Continuing from "Linear algebra and analysis for students of humanities and social sciences major I," learn the fundamentals of linear algebra and analysis needed in economics, statistics, and data science. The goal is to understand linear regression, calculus of bivariate functions, and basic optimization methods, and to be able to apply them to simple problems. Lectures and exercises using MATLAB will be given in parallel for a practical understanding of the subject
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
0704123
FEC-ST4801L1
文科系のための線形代数・解析Ⅱ
藤堂 眞治
S2
月曜2限、木曜2限
マイリストに追加
マイリストから削除
文科系のための線形代数・解析Ⅰ
詳細を見る MIMA Search
経済学や統計学、データ科学などにおいて必要とされる線形代数の基礎を学ぶ。二次元・三次元の線形写像と行列、固有値分解などを理解し、簡単な問題に応用できるようになることを目標とする。講義とMATLABを用いた演習を並行して進めることで実践で役立つ理解を目指す Learn the basics of linear algebra required in economics, statistics, and data science. The goal is to understand two- and three-dimensional linear maps and matrices, eigenvalue decomposition, etc., and to be able to apply them to simple problems. Lectures and exercises using MATLAB will be given in parallel for a practical understanding of the subject
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
0704122
FEC-ST4801L1
文科系のための線形代数・解析Ⅰ
藤堂 眞治
S1
月曜2限、木曜2限
マイリストに追加
マイリストから削除
数理最適化特論
詳細を見る MIMA Search
本講義では連続最適化を中心に解説を行う.これまで連続最適化手法は様々な分野で用いられているが,特に近年,機械学習分野で盛んに用いられている.機械学習分野の応用例として,大規模な最適化問題が登場することが多々あり,大規模な問題を早く解くための手法が必要とされている.そのため ,1次法(目的関数の1次の微分情報を利用した解法)が再び注目されている.  本講義では,1次法の基本的なアルゴリズム(最急降下法),1次法における最近の進展,またアルゴリズムの理論的保証(収束性など)の与え方について学ぶ.また,2次法(ニュートン法など)や制約付き最適化手法についても紹介する.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
4820-1032
GIF-MA6217L1
数理最適化特論
武田 朗子
S1 S2
水曜3限
マイリストに追加
マイリストから削除
最適化手法
詳細を見る MIMA Search
現代の理工学の様々な局面にて重要性が増している数理最適化手法の基礎を解説する。Basic methodologies of mathematical optimization are explained.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
FEN-AM2150L1
FEN-AM2150L1
最適化手法
佐藤 一宏
A1 A2
月曜3限
マイリストに追加
マイリストから削除
数理計画と最適化2
詳細を見る MIMA Search
外界から情報を取り入れ,知的な行為をするエージェントを構成するための方法論(数理計画と最適化手法)の確立を目指す.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
FEN-SI3712L1
FEN-SI3712L1
数理計画と最適化2
太田 順
A1
木曜1限、木曜2限
マイリストに追加
マイリストから削除
最適化・意思決定論
詳細を見る MIMA Search
Operations Research (O.R.) is the application of scientific and mathematical methods to the study and analysis of problems involving complex systems (according to The Institute for Operations Research and the Management Sciences). Among many mathematical methods and tools in O.R., the most fundamental is the concept of optimization. It is to search for the best choice among possible alternatives under certain conditions and constraints. In the mathematical language, it is to maximize or minimize a given objective function by controlling decision variables under the set of constraints. Optimization theory is also a part of applied mathematics, and is widely employed in academic disciplines that deal with mathematical modeling of human decision making. In particular, it plays an essential role in economics for its descriptions of economic decision making and valuation. In this lecture, students will learn the theories of mathematical optimization as methods in O.R. The lecture starts with providing an overview of O.R. with an emphasis on optimization methods. It moves on to the theory of static optimization. The third part of the lecture discusses the theory of dynamic optimization.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
08D1426
FAS-DA4F26L3
最適化・意思決定論
前田 章
A1 A2
水曜2限
マイリストに追加
マイリストから削除
統計と最適化
詳細を見る MIMA Search
機械学習の基礎となる統計と最適化に関する講義を行う. / Lectures on statistics and optimization as the foundations of machine learning.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
0510009
FSC-IS2009L1
統計と最適化
杉山 将
A1 A2
火曜3限
マイリストに追加
マイリストから削除
ネットワーク最適化
詳細を見る MIMA Search
During this class, we discuss fundamental and state-of-the-art research results on network optimization. The class covers results on sensor networks and social networks. Network design algorithms and efficient algorithms for networks with several million nodes are also discussed during the class. 通信ネットワーク、センサーネットワークやソーシャルネットワークの効率を最適化するアルゴリズムを、基礎から最近の研究成果まで議論する講義である。ネットワークデサインアルゴリズムや数千万ノードがある巨大ネットワークを高速に最適化できるアルゴリズムも議論する。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
4810-1185
GIF-CS5056L3
ネットワーク最適化
Suppakitpaisarn Vorapong
A1 A2
月曜3限
マイリストに追加
マイリストから削除
統計学I[広域システムコース]
詳細を見る MIMA Search
現代の『統計学』は様々な学問分野(機械学習・人工知能・制御理論・信号処理・統計物理等々)に波及した、『統計科学』と呼ぶべきものになっている。この授業では幅広い分野で欠かせない、統計学の基礎・本質的な考え方・解析手法を学ぶ。現代的な視点から特に重要と思われる項目を選択的に取り扱い、様々な場面で実用性の高い統計学の解析手法を解説する。この授業は講義「統計学実習」と連動しており、実習を通じて、講義で学んだ解析手法を、自ら使えるようになることを目標としている。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
08D1306
FAS-DA2E06L1
統計学I[広域システムコース]
大泉 匡史
A1 A2
月曜2限
マイリストに追加
マイリストから削除
統計学実習[広域システムコース]
詳細を見る MIMA Search
現代の『統計学』は様々な学問分野(機械学習・人工知能・制御理論・信号処理・統計物理等々)に波及した、『統計科学』と呼ぶべきものになっている。この講義では、この講義と連動した講義である「統計学/統計学I」で学習した統計解析の手法を使って実際のデータ解析を行う。解析には、現代のデータ分析や機械学習においては代表的なプログラミング言語の一つであるpythonを用いるが、他のプログラミング言語を用いて解析を行っても問題ない。実習を通じて解析手法の理解を深め,受講者自身が様々な場面において適切な解析手法を自ら選び、使えるものにすることを目標とする。
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
08D1310
FAS-DA2E09P1
統計学実習[広域システムコース]
大泉 匡史
A1 A2
木曜5限
マイリストに追加
マイリストから削除
1 2 3 4 5

1-10 / 全3374件