課程
横断型教育プログラム
共通授業科目
学部・研究科
学年
学期
時限
曜日
講義使用言語
実務経験のある教員による
授業科目
授業カタログとは 授業カタログとは
JP EN
課程
横断型教育プログラム
共通授業科目
学部・研究科
学年
学期
時限
曜日
講義使用言語
実務経験のある教員による
授業科目
HOME 検索結果
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年10月18日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。
Science, Technology and Public Policy
詳細を見る MIMA Search
The development and diffusion of science innovative technologies is indispensable for modern society. However, despite its benefits, the development of science and technology is not without various risks and social problems. So far as we are going to make societal decisions for the use of science and technologies with diverse social implications that encompass both risks and benefits, sometimes involving values implications, there is a need for mechanisms of decision making and management of the development and utilization of science and technology. Decisions can be different depending on environmental, institutional and cultural conditions. In addition, innovative policy instruments/ mechanisms to deal with rapidly changing science and technology, including regulatory measures, are required for implementing decisions. This course will deal with wide range of issues from local to global levels faced at the interface areas between science, technology and public policy from comparative perspective of Japan, the US and Europe. It offers key theoretical issues surrounding Science and Technology and provides students with the tools and frameworks, such as risk assessment/ management and transition management, to analyze them. This course invites students from both natural science backgrounds (i.e. the graduate school of engineering, new frontier science and so on) and social science backgrounds (graduate school of public policy, law and politics, and economics and public policy). We expect students to acquire interdisciplinary perspective in addition to their primary major, which is one of the critical skill in analyzing complex social technical issues posed by science and technology.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
5112131
GPP-MP5P10L3
Science, Technology and Public Policy
松尾 真紀子
A2
月曜5限、水曜4限
マイリストに追加
マイリストから削除
Science, Technology and Public Policy
詳細を見る MIMA Search
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
3792-146
GEN-TM6n49L3
Science, Technology and Public Policy
松尾 真紀子
A2
月曜5限、水曜4限
マイリストに追加
マイリストから削除
Behavioral Science for Public Policy
詳細を見る MIMA Search
The goal of this course is to enhance students’ abilities to apply insights from the behavioral sciences in designing policies and interventions that improve well-being of societies across the world. This course accomplishes it by 1) providing a general overview of recent advancements in behavioral science research from psychology and behavioral economics, and 2) analyzing the gaps between research, evidence and practice. Applications of the materials covered in this course include public health, environment, management, education, business, politics, and development, among others.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
5123047
GPP-MP6E20L3
Behavioral Science for Public Policy
大貫 真友子
A1 A2
水曜5限
マイリストに追加
マイリストから削除
統合物質科学俯瞰講義II
詳細を見る MIMA Search
広く産学官にわたってグローバルに活躍するために必要な「俯瞰力」を養成することを目指す。物質科学の各分野について最先端の知識を修得し、自分の専門分野と周辺分野がどのように関連するか、あるいはし得るか、について深く考察するために、第一線で活躍する講師の方々にその分野の最前線を概観していただく。さらに、それらの講義を通して異分野間のコミュニケーションを円滑に進めるための具体的方法論を学ぶ。 This survey course is designed to enable students to develop the broad perspective that is required of global leaders working in and across industry, academia, and government. Students will gain knowledge and insight on advancements in each field of materials science research, given by leading researchers working on the frontline in those fields. This will allow students to consider how peripheral fields are related to their own area of expertise, and to consider the potential for forging bridges between related fields in the future. In addition, students will learn specific methodologies designed to facilitate smooth communication among different disciplines.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
3799-204
GEN-CO6z41L1
統合物質科学俯瞰講義II
各教員
S1 S2
木曜6限
マイリストに追加
マイリストから削除
科学技術政策研究:経済学系(Data Science for Practical Economic Research)
詳細を見る MIMA Search
Despite its name, this class is on forecasting methods in economics and applications of machine learning methods to forecasting. A typical class on machine learning focuses on cross-sectional data, leaving almost no space for a discussion of how to work with time series data and how to make forecasts with such data. The purpose of this class is to cover this gap. This class might be useful for students who plan to work at financial companies and government entities tasked with making forecasts. We will closely follow the textbook by G. Elliott and A. Timmermann "Economic Forecasting". The book is quite advanced and requires good understanding of probability and statistics. During the lectures, we will cover chapters from this textbook and perform hands-on sessions. The required programming language is Python. Students taking this class will be assumed to be familiar with basics of Machine Learning, probability and statistics, as well as programming in Python.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
5173105
GPP-DP6E70L3
科学技術政策研究:経済学系(Data Science for Practical Economic Research)
Kucheryavyy Konstantin
S2
月曜4限、水曜4限
マイリストに追加
マイリストから削除
Data Science for Practical Economic Research
詳細を見る MIMA Search
Despite its name, this class is on forecasting methods in economics and applications of machine learning methods to forecasting. A typical class on machine learning focuses on cross-sectional data, leaving almost no space for a discussion of how to work with time series data and how to make forecasts with such data. The purpose of this class is to cover this gap. This class might be useful for students who plan to work at financial companies and government entities tasked with making forecasts. We will closely follow the textbook by G. Elliott and A. Timmermann "Economic Forecasting". The book is quite advanced and requires good understanding of probability and statistics. During the lectures, we will cover chapters from this textbook and perform hands-on sessions. The required programming language is Python. Students taking this class will be assumed to be familiar with basics of Machine Learning, probability and statistics, as well as programming in Python.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
0704254
FEC-EC5801L3
Data Science for Practical Economic Research
Kucheryavyy Konstantin
S2
月曜4限、水曜4限
マイリストに追加
マイリストから削除
Data Science for Practical Economic Research
詳細を見る MIMA Search
Despite its name, this class is on forecasting methods in economics and applications of machine learning methods to forecasting. A typical class on machine learning focuses on cross-sectional data, leaving almost no space for a discussion of how to work with time series data and how to make forecasts with such data. The purpose of this class is to cover this gap. This class might be useful for students who plan to work at financial companies and government entities tasked with making forecasts. We will closely follow the textbook by G. Elliott and A. Timmermann "Economic Forecasting". The book is quite advanced and requires good understanding of probability and statistics. During the lectures, we will cover chapters from this textbook and perform hands-on sessions. The required programming language is Python. Students taking this class will be assumed to be familiar with basics of Machine Learning, probability and statistics, as well as programming in Python.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
291324-02
GEC-EC6322L3
Data Science for Practical Economic Research
Kucheryavyy Konstantin
S2
月曜4限、水曜4限
マイリストに追加
マイリストから削除
Data Science for Practical Economic Research
詳細を見る MIMA Search
Despite its name, this class is on forecasting methods in economics and applications of machine learning methods to forecasting. A typical class on machine learning focuses on cross-sectional data, leaving almost no space for a discussion of how to work with time series data and how to make forecasts with such data. The purpose of this class is to cover this gap. This class might be useful for students who plan to work at financial companies and government entities tasked with making forecasts. We will closely follow the textbook by G. Elliott and A. Timmermann "Economic Forecasting". The book is quite advanced and requires good understanding of probability and statistics. During the lectures, we will cover chapters from this textbook and perform hands-on sessions. The required programming language is Python. Students taking this class will be assumed to be familiar with basics of Machine Learning, probability and statistics, as well as programming in Python.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
5123038
GPP-MP6E20L3
Data Science for Practical Economic Research
Kucheryavyy Konstantin
S2
月曜4限、水曜4限
マイリストに追加
マイリストから削除
グローバル教養科目(Women in Science)
詳細を見る MIMA Search
The course will take an intersectional approach to why we commonly find an underrepresentation of women in the Science, Technology, Engineering and Mathematics (STEM) fields. The course will begin by addressing our own unconscious biases and stereotypes, and question the research behind male and female differences. We will cover the brief history of the underrepresentation of minorities and explore research articles on why and how women and other minorities have been excluded from STEM fields. Students will be expected to read scientific articles, discuss them, and apply those concepts to examine their own social environments.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
7V0101050A-P/F
FGL-GL3150S3
グローバル教養科目(Women in Science)
RUIZ TADA Elisa
A1 A2
水曜5限
マイリストに追加
マイリストから削除
グローバル教養科目(Women in Science)
詳細を見る MIMA Search
The course will take an intersectional approach to why we commonly find an underrepresentation of women in the Science, Technology, Engineering and Mathematics (STEM) fields. The course will begin by addressing our own unconscious biases and stereotypes, and question the research behind male and female differences. We will cover the brief history of the underrepresentation of minorities and explore research articles on why and how women and other minorities have been excluded from STEM fields. Students will be expected to read scientific articles, discuss them, and apply those concepts to examine their own social environments.
時間割コードを開く
時間割コードを閉じる
時間割/共通科目コード
コース名
教員
学期
時限
7V0101050A
FGL-GL3150S3
グローバル教養科目(Women in Science)
RUIZ TADA Elisa
A1 A2
水曜5限
マイリストに追加
マイリストから削除
1 2 3 4 5

1-10 / 全14247件