学部後期課程
HOME 学部後期課程 数理手法VII
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年10月18日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

数理手法VII

時間とともに変化する対象を記録したデータが時系列である。時系列は、生体信号、地震波、インターネットログ、株価、センサーデータなど分野を超えて現れる。時系列から、その背後にある複雑な現象を理解し、予測、制御や意思決定を行う方法論が時系列解析である。この講義では、時系列の分析に必要となる、1. 可視化、2. 記述的分析、3. 統計モデルを用いた分析、を説明する。本講義では、時系列の分析手法やモデリング技術の基本アイデアを中心に解説する。本講義の目標は、時系列分析の手法を理解した上で、時系列データに対して適切な分析ができるようになることである。
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
FEN-CO4147L1
FEN-CO4147L1
数理手法VII
小林 亮太
S1 S2
水曜5限
マイリストに追加
マイリストから削除
講義使用言語
日本語、英語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
開講所属
工学部
授業計画
1. 時系列解析とその目的 2. 時系列の可視化 3. 自己相関・スペクトル解析 4. 時系列モデル (AR, ARMAモデル) 5. 状態空間モデル (State space model) 6. さらに進んだ話題 (非定常、非線形性の取扱いなど)
授業の方法
予習は不要であるが、小テストに備えて講義ノートを復習をすることが望ましい。 講義を受けた後には、講義ノート (UTOL: UTokyo LMS で公開予定) の例題などを自分の手を動かして解いたり、 R言語などを使って時系列データの解析を試したりすることを勧める。 復習して不明な点が出てきた場合には、講義前後などに質問をすること。
成績評価方法
小テスト (50%) および 発表、レポート (50%)
教科書
1. Rによる時系列モデリング入門 北川源四郎 (岩波書店)、2. 北川先生の講義資料: https://ocwx.ocw.u-tokyo.ac.jp/***** 、3. 参考書 (洋書): Hamilton D.J., "Time Series Analysis" Princeton Univ. Press.
参考書
特になし。自分の興味の持ったデータに時系列解析を使って解析してみることを勧める。
履修上の注意
基礎を固める(工学部共通)
その他
前提となる知識と項目:1. 確率、統計の基礎的知識 (講義:基礎統計、参考書:統計学入門 (基礎統計学I)、東京大学教養学部統計学教室、東京大学出版会)、 2. プログラミングの基礎的知識があると望ましいが必須ではない。R言語をインストールできる環境を準備すること。 応用先_分野と項目:時系列解析はさまざまな分野に応用できる。以下、いくつかの例を挙げる。 1. 生体信号分析 (脳波、神経スパイク、心電図、筋電図など) 2. 地震学、気象学 3. Web, ソーシャルメディア (Twitter, Redditなど) データの分析 4. ファイナンス、金融データ分析 5. 経済データ分析