Contents (Hirschberger):
1. Introduction: Topological matter: via response to external current
2. Gauge transformation in Quantum Mechanics: electromagnetic field (in ‘first’ quantization)
3. Example A: Aharonov-Bohm effect
4. Example B: Dirac monopole and charge quantization
5. Berry phase: Gauge field beyond electromagnetic vector potential (‘virtual gauge field’, emergent electrodynamics)
6. Example A: Berry phase for two-level system (abstraction of Dirac monopole)
7. Example B: Monopoles in k-space, Chern number of Weyl semimetal
8. Example C: Monopoles in real space: magnetic soliton (skyrmion)
9. Example D: Dynamics of emergent field, emergent inductance
10. Advanced topics: Modern theory of polarization, and orbital magnetization
Contents (Gong):
-- Equilibrium Part --
1. Introduction: motivation, quadratic Hamiltonian/Gaussian states, fundamental symmetry (Altland-Zirnbauer) classes
2. Integer quantum Hall effects (IQHE): Hofstadter model, Chern insulators (anomalous IQHE), bulk-edge correspondence
3. Topological insulators (TI): Z_2 time-reversal-symmetric TI, SSH model, periodic table
-- Nonequilibrium Part --
4. Quench in topological phases: dynamical symmetry breaking, spate-time topology, dynamical phase transition
5. Floquet topological phases: adiabatic pump, Floquet engineering, anomalous Floquet TI
6. Dissipative topological phases: Markovian free-fermion systems, non-Hermitian systems
7. Outlook