大学院
HOME 大学院 Mathematics for Public Policy
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年8月27日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

Mathematics for Public Policy

Mathematical methods for public policy analysis
This is an introductory course in mathematical methods for public policy analysis, aimed at GraSPP students without strong backgrounds in mathematics. Especially, students who came from non-economics, non-engineering or non-science majors are welcomed. This course helps students develop mathematical foundation skills for applying useful mathematical techniques to public policy issues. The course consists of four parts. In the first, I introduce the foundations of differential calculus. In the second, I introduce some concepts in linear algebra. The third part is devoted to multivariate calculus and constrained static optimization. The last part provides an introduction to dynamic optimization and linear dynamic systems.
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
5130251
GPP-MP6Z30L3
Mathematics for Public Policy
加藤 涼
A1 A2
木曜2限
マイリストに追加
マイリストから削除
講義使用言語
英語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
不可
開講所属
公共政策学教育部
授業計画
I. Single variable calculus 1. Functions and limits 2. Differential calculus 3. Applications of derivatives 4. Integral calculus (optional) II.Linear algebra 5.Linear systems 6. Matrix algebra 7. Linear independence 8. Inner product 9. Linear transformations 10. The determinant function III. Multivariable calculus 11. Partial derivative 12. Linear approximation 13. Constrained optimization IV. Dynamic analysis 14. Introduction to dynamic optimization 15. Linear dynamic systems 16. Practice using Matlab (optional)
授業の方法
Lecture
成績評価方法
Your final course grade will be determined based on your homework (problem sets), and final exam scores. 50 percent is given for each.
教科書
No specific textbook is required.
参考書
Calculus, by Gilbert Strang Linear algebra for everyone, by Gilbert Strang The ABCs of RBCs: An Introduction to Dynamic Macroeconomic Models by George McCandless
履修上の注意
Prospective students are expected to take the screening test before the first day of the class. (Screening test problems and answers will be posted on UTAS syllabus for late September.) Those who score 60 percent or lower based on the self-assessment in the screening test are highly recommended to take this course. If your score is around 60 percent and you like to refresh your memory of undergraduate-level mathematics, this course could provide a good opportunity to move on to advanced courses on quantitative methods.