HOME 学部前期課程 全学自由研究ゼミナール（PEAK)(Introductory course in linear algebra)　(Introductory course in linear algebra)

UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

# 全学自由研究ゼミナール（PEAK)(Introductory course in linear algebra)　(Introductory course in linear algebra)

Introductory course in linear algebra
Phenomena in natural and social sciences are usually complicated, and seldom described by linear equations. However, Linear Algebra is still powerful and effective in describing essential parts of the phenomena by linear approximation. Thus Linear Algebra has vast applications.

Linear Algebra will further provide basics for considering linear spaces that appear in quantum mechanics or Fourier analysis. The ideas in Linear Algebra are broadly utilized in sciences and engineering, including agriculture, medicine, and economy, as well as in mathematics and physics.

Although Linear Algebra is simple and clear in theory, one needs to be familiar with abstract concepts in mathematics to properly deal with it in practice. It is important for students to keep on deepening their understanding by working with exercise and related problems.

コース名

50633
CAS-TC1200S1

A1 A2

2

NO

The topics listed below will be covered in the course. The items 1-5 and their applications will be treated in Mathematics II ① in 2023 A semester and 6-10 in Mathematics II ② in 2024 S semester. The latter will be heavily based on the the former. 1. Sets and maps 2. Geometry of plane and space 3. Matrices and linear maps 4. Systems of linear equations 5. Bases of linear spaces 6. Orthonormal bases 7. Signature of quadratic forms 8. Determinants of square matrices 9. Eigenvalues and eigenvectors 10. Jordan form of square matrices The classes will be conducted for 105 minutes.

Lecture by blackboard and projector.

Final examination and class participation.

この科目は、PEAK理科生向けの英語による線型代数学の講義「数学II(PEAK)」に参加して、英語で線型代数を学ぶというものです。本科目では授業への参加を必須とし，期末試験の結果に加え，平常点を重視して成績を付けます。 　通年の授業内容の前半部分である数学II①(PEAK)が今学期Aセメスター、後半部分である数学II②(PEAK)が来年度Sセメスターに開講されます。後半部分の授業は前半部分の授業内容を前提として行いますので、後半部分を履修する場合には、前半部分である本科目を先に履修することを薦めます。