大学院
HOME 大学院 国際協力学のための基礎数学
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年10月18日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

国際協力学のための基礎数学

This course aims at equipping the students with the knowledge of mathematics that is needed to study vast areas of subjects related to international studies. Specifically, the course focuses on linear or matrix algebra and on differential calculus, including optimisation. The target audience of the course is students who lack or have been away from mathematics since the end of secondary education; thus, the course is designed to be accessible to such students. Yet, the course should be a useful refresher for students with stronger mathematical backgrounds, too.

After completion, students are expected to be able to:
- Conduct basic operations of matrix algebra
- Explain the concept of linear independence
- Explain different ways to solve linear equations
- Describe the concepts of determinant and eigenvalues
- Explain elementary functions and their properties
- Explain the concepts of derivatives and integrations
- Conduct basic derivatives and integrations
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
47191-05
GFS-IS6A06L3
国際協力学のための基礎数学
中田 啓之
S1
火曜4限、水曜4限
マイリストに追加
マイリストから削除
講義使用言語
英語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
開講所属
新領域創成科学研究科
授業計画
Lecture 1 (9 April): Introduction and Vectors Lecture 2 (10 April): Vectors and Matrices Lecture 3 (16 April): Linear Equations Lecture 4 (17 April): Inverse and Transpose of Matrix Lecture 5 (23 April): Vector Spaces and Subspaces Lecture 6 (24 April): Linear Independence and Orthogonality Lecture 7 (30 April): Determinants and Eigenvalues Lecture 8 (1 May): Calculus Preliminaries: Numbers and Functions Lecture 9 (8 May): Derivatives Lecture 10 (14 May): Derivatives Lecture 11 (15 May): Integrals Lecture 12 (21 May): Integrals and Functions of Two Variables Lecture 13 (22 May): Partial Derivatives Lecture 14 (28 May): Multiple Integrals
授業の方法
By lectures. There will be mandatory weekly home assignments/problem sets, although they will not be given marks/grades. Lectures will be held in Lecture Room 7 in the Environmental Studies Building (Kashiwa campus), but zoom recordings of the lectures will be made available afterwards. All materials will be distributed via UTOL.
成績評価方法
Pass/Fail only, based on 30% by attendance and 70% by submissions of home assignments. Credits based on professional careers (CBPC) are not applicable to this course.
教科書
No textbook will be used.
参考書
Johnston, N., “Introduction to Linear and Matrix Algebra”, Springer-Nature, 2021. Strang, G., “Calculus”, Wellesley-Cambridge Press, 1991. Strang, G., “Introduction to Linear Algebra”, 5th ed., Wellesley-Cambridge Press, 2016. Wadati, M., “Calculus, An Introductory Course of Mathematics for Science and Engineering” (in Japanese), Iwanami Shoten, 2021.
履修上の注意
a) It is essential to read the required readings prior to lectures. b) When you get stuck with some questions in home assignments, review the relevant lectures.