Aims:
This course aims at introducing game theory with a focus on its applications to issues that require cooperation amongst different parties. Specifically, the course covers both cooperative game theory and non-cooperative game theory. The target audience of the course is students who are interested in topics related to cooperation.
Intended Learning Outcomes
Upon completion, students will be able to:
- Explain the structure and solution concepts of cooperative games.
- Explain the structure of normal-form games.
- Explain and apply the concept of Nash equilibrium.
- Explain the structure of Bayesian games.
- Explain the revelation principle.
- Apply backward induction to derive subgame-perfect equilibrium.
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
47190-75
GFS-IS6B13L3
国際協力における数理分析手法Ⅰ
中田 啓之
A1
集中
マイリストに追加
マイリストから削除
講義使用言語
英語
単位
1
実務経験のある教員による授業科目
NO
他学部履修
可
開講所属
新領域創成科学研究科
授業計画
Lecture 1 (8 October): Introduction
Lecture 2 (10 October): Cooperative Game Theory
Lecture 3 (15 October): Rationality and Common Knowledge
Lecture 4 (17 October): Nash Equilibrium
Lecture 5 (22 October): Bayesian Games
Lecture 6 (24 October): Mechanism Design
Lecture 7 (29 October): Dynamic Games
授業の方法
Lectures and weekly home assignments.
成績評価方法
100 percent by coursework (an essay).
Credits based on professional careers (CBPC) are applicable to this course.
教科書
No required-purchase.
参考書
Osborne, M.J. and A. Rubinstein, 'A Course in Game Theory', MIT Press, 1994.
Tadelis, S., ' Game Theory: An Introduction', Princeton University Press, 2013.
履修上の注意
Prerequisites: Basic knowledge of differential calculus, matrix algebra and elementary probability theory.