大学院
HOME 大学院 知識情報処理論
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年9月17日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

知識情報処理論

(授業計画に例示した)パターン認識と機械学習の手法の紹介を行います。最終的にこれらの手法の基本的な概念を会得し「各自が直面するであろう研究的な課題」に適用し、計算機を用いて実験データから発見ができる(もしくはその手がかりを見つける)ことを目標とします。そのために各手法について実習を交え講義します。
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
3912137
GAG-CC6204L1
知識情報処理論
麻生川 稔
S2 A1
集中
マイリストに追加
マイリストから削除
講義使用言語
日本語
単位
1
実務経験のある教員による授業科目
NO
他学部履修
開講所属
農学生命科学研究科
授業計画
2024年9月20日、27日、10月4日、11日、18日、25日、11月1日 17:15~19:00 バイオインフォマティクス研究に必要な統計的解析手法と機械学習手法について基本的なメカニズムを理解し、各自の研究データにこれらの手法が適用できるように、 (1)ニューラルネットワークの基礎、学習アルゴリズム (2)判別分析、ニューラルネットワークの応用例 (3)学習済みニューラルネットワークの解析法、ディープラーニング、相関解析 (4)クラスタ分析、主成分分析 (5)カーネル関数を用いた学習(SVM) (6)決定木 (7)隠れマルコフモデル などを講義する予定です。
授業の方法
講義はZoomを用いて実施します。講義後にオンデマンド配信も行う予定です。
成績評価方法
昨年度は、「4回のレポートで判断」としました。この基準は、学生の習熟度などに応じて適宜変更します。
教科書
特になし。
参考書
特になし。
履修上の注意
・Rを利用予定です。インストールしておいて下さい。必要なパッケージは、ITC-LMSにてお知らせします。 ・R(もしくは、RStudio)の基本的な利用法を習得済みであることを前提として行います。https://www.iu.a.u-tokyo.ac.jp/*****のR1.010やR1.020などを参考にして、基礎的な事柄を理解しておいてください。
その他
説明(medium of instrucion):J 、資料(course materials):J 許可なく講義画面のスクリーンショットを撮影することや、講義の録画・録音すること、これらを第三者がわかるような形でアップロードすることは、不正行為と見なされます。講義のZoom URLを第三者に提供することも不正行為と見なされます。