大学院
HOME 大学院 知識情報処理論
学内のオンライン授業の情報漏洩防止のため,URLやアカウントの記載は削除しております。
最終更新日:2022年4月21日

知識情報処理論

知識情報処理論
(授業計画に例示した)パターン認識と機械学習の手法の紹介を行います。最終的にこれらの手法の基本的な概念を会得していただき、「各自が直面するであろう研究的な課題」に適用し、計算機を用いて実験データから発見ができる(もしくはその手がかりを見つける)ことを目標とします。そのために、各手法について、実習を交えながら講義します。
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
3912137
GAG-CC6204L1
知識情報処理論
麻生川 稔
S2 A1
集中
マイリストに追加
マイリストから削除
教室
シラバス シラバス「その他」欄参照
講義使用言語
日本語
単位
1
実務経験のある教員による授業科目
NO
他学部履修
開講所属
農学生命科学研究科
授業計画
2022年9月9日、16日、30日、10月7日、14日、21日、28日 17:15-18:45 バイオインフォマティクス研究の為に必要な統計的解析手法と機械学習手法について基本的なメカニズムを理解し、各自の研究データにこれらの手法が適用できるように、(1)ニューラルネットワークの基礎、学習アルゴリズム (2)判別分析、ニューラルネットワークの応用例 (3)学習済みニューラルネットワークの解析法、ディープラーニング、相関解析 (4)クラスタ分析、主成分分析 (5)カーネル関数を用いた学習(SVM) (6)決定木 (7)隠れマルコフモデル などを講義する予定です。講義中の実習はすべてRを用いて行います。
授業の方法
講義はZoomを用いて実施します。 講義資料の配布などは、 ITC-LMS を通して行います。
成績評価方法
昨年度は、「4回のレポートで判断」としました。この基準は、学生の習熟度などに応じて適宜変更します。
教科書
特になし。
参考書
特になし。
履修上の注意
・PCとRの基本的な操作ができること。 ・Rを利用予定です。インストールしておいて下さい。必要なパッケージは、ITC-LMSにてお知らせします。 ・R(もしくは、RStudio)の基本的な利用法を習得済みであることを前提として行いますので、http://www.iu.a.u-tokyo.ac.jp/*****の「基本的な利用法」などを参考にして基礎的な事柄を理解しておいてください。
その他
説明(medium of instrucion):J 、資料(course materials):J ・Zoomオンライン講義です。講義後にオンデマンド配信も行う予定です。 ・授業のZoom URLを公開することは厳禁です。 ・本講義のスクリーンショット撮影、録画や録音等は一切禁止します。