大学院
HOME 大学院 計算科学・量子計算における情報圧縮
過去(2022年度)の授業の情報です
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2023年10月20日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

計算科学・量子計算における情報圧縮

現在の計算科学では、銀河のダイナミクスから量子ビット間のエンタングルメントまで多岐にわたる問題が研究対象となっている。これら多様な問題を計算機で扱う際には、対象系の巨大な自由度をいかに圧縮し、効率的に有限のメモリ内で表現するかが、共通する課題となる。とくに多体問題では、しばしば、構成要素数に対して指数関数的に自由度が増大するため、膨大な自由度をいかに扱うかが普遍的に重要な課題となってきた。現在では、天文や物理学、化学などの個々の科学分野での発展に加え、応用数理や量子情報からの知見を取り入れた情報圧縮手法が注目を集めている。本講義では、情報圧縮の基礎となる線形代数、特に特異値分解等を用いた、行列・テンソルの低ランク近似の紹介から始め、物質科学や素粒子理論で自由度の効率的な圧縮に用いられている行列積状態それを拡張したテンソルネットワーク状態、効率的な圧縮の背景にあるエンタングルメントの概念、さらにはテンソルネットワークの量子計算への応用について学ぶ。
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
3752-094
GEN-AP6942L1
計算科学・量子計算における情報圧縮
藤堂 眞治
A1 A2
木曜3限
マイリストに追加
マイリストから削除
講義使用言語
日本語/英語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
開講所属
工学系研究科
授業計画
• 第1回: 計算科学・量子計算と情報圧縮 • 第2回: 線形代数の復習 • 第3回: 特異値分解 • 第4回: 特異値分解のテンソルへの拡張+応用 • 第5回: 情報のエンタングルメントと行列積表現 • 第6回: 行列積表現の固有値問題への応用 • 第7回: テンソルネットワーク表現への発展 • 第8回: テンソルネットワークにおける情報圧縮 • 第9回: テンソルネットワーク繰り込み群 • 第10回: 量子力学と量子計算 • 第11回: 量子コンピュータ・シミュレーション • 第12回: 量子古典ハイブリッドアルゴリズムとテンソルネットワーク • 第13回: 量子誤り訂正とテンソルネットワーク #1: Computational science, quantum computing, and data compression #2: Review of linear algebra #3: Singular value decomposition #4: Application of singular value decomposition to tensor network #5: Entanglement of information and matrix product state #6: Application of matrix product state to eigenvalue problems #7: Tensor network representation #8: Data compression in tensor network #9: Tensor network renormalization group #10: Quantum mechanics and quantum computation #11: Simulation of quantum computers #12: Quantum-classical hybrid algorithms and tensor network #13: Quantum error correction and tensor network
授業の方法
線形代数、計算機プログラミングの基礎を学んでいることが望ましい。 Basic knowledge of linear algebra and computer programming is preferable.
成績評価方法
2回のレポート提出に基づいて成績を評価する。 Grades will be given based on 2 reports.
履修上の注意
指示しない