大学院
HOME 大学院 知識獲得システム論
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2025年10月17日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

知識獲得システム論

This course selects a specific theme from the broad field of machine learning and cover its fundamental concepts, the principles behind key algorithms, implementation, and applications to real-world problems. This year we focus on unsupervised learning. Unlike supervised learning, evaluating the results of unsupervised learning is not straightforward. Furthermore, the common definition that "unsupervised learning is learning with unlabeled training data" is not always accurate. We introduce diverse topics ranging from classical principal component analysis (PCA) and clustering methods to deep generative models. The course is roughly divided into two parts: the first part will delve into foundational and classical (yet still important) unsupervised learning methods, and the last part will deal with deep generative models.
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
3734-104
GEN-AA6o09L1
知識獲得システム論
矢入 健久
A1 A2
金曜2限
マイリストに追加
マイリストから削除
講義使用言語
英語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
開講所属
工学系研究科
授業計画
(Tentative; we will flexibly change the contents.) 1. Course guidance and introduction to unsupervised learning 2. Principal components analysis (PCA) and SVD, linear autoencoder 3. k-means clustering and Gaussian mixture model, EM algorithms 4. Probbabilistic interpretations of PCA and mixture models 5. Manifold learning (Isomap, Laplacian Eigenmaps, t-SNE, UMAP) 6. Unsupervised learning of dynamical systems 7. Autoencoders 8. Autoregressive generative models 9. Normalizing flows 10. Generative adversarial networks, energy-based models, etc. 11. Diffusion models, score-based models 12, 13 Student presentations
授業の方法
In accordance with the Graduate School of Engineering's policy, this course will be conducted in English starting from this academic year (2025). Considering the convenience for both participants and instructors, questions and discussions can also be done in Japanese if needed.
成績評価方法
Evaluation will be based on the presentations and reports in the end of semester.
履修上の注意
指示しない
その他
前提となる知識と項目:- Probability and statistics (including Bayesian inference) - Linear algebra (vector, matrix manipulation, eigendecomposition) - Numerical programming using Python or other languages