大学院
HOME 大学院 塑性学
学内で開催されるオンライン授業の情報漏えい防止のため,2020年4月4日以降は授業カタログの更新を見合わせています

塑性学

S1タームの弾性学に引き続き本講義を開講する。本講義では、金属材料を代表例にとり、塑性変形を支配する関係式、塑性変形の記述方法、構成式などの、塑性変形している物体の応力や変形の計算に必要な事柄を講義する。さらに、塑性のマルチスケールを説明する。/This lecture is opened to follow the lecture on ‘Elasticity’ in term S1. In this lecture, taking metallic materials as representative materials, necessary topics to analyze stress and deformation of plastically-deformed bodies, such as governing equation of plastic deformation, description to plastic deformation, constitutive equations, are given. Finally, multi-scale aspects of plasticity will be explained.
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
3722-144
GEN-ME6b22L1
塑性学
柳本 潤
S2
火曜2限、金曜4限
マイリストに追加
マイリストから削除
教室
工学部新2号館 工222号講義室
講義使用言語
日本語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
開講所属
工学系研究科
授業計画
1.金属材料の塑性変形概論 1.1 単軸引張り・圧縮時の金属材料の変形 1.2 大変形に対応した応力とひずみ、ひずみ増分 1.3 応力-ひずみ曲線の数式化 1.4 塑性変形の非圧縮性、転位運動とすべり、Schmid因子 2.塑性学 2.1 塑性力学の体系、Cauchyの関係式 2.2 3次元変形に対応したひずみ増分 2.3 固有方程式 2.4 偏差応力 2.5 降伏条件の一般形式と具体形 2.6 降伏関数・降伏曲面と法線則 2.7 加工硬化則と流れ則・塑性ポテンシャル 2.8 剛塑性構成式 2.9 変形勾配の弾塑性分解と等方性材料についての弾塑性構成式 3.塑性異方性 3.1 薄板の面内異方性と異方性を表すパラメータの二つの決定法 3.2 異方性を表す降伏条件の例(Hill48) 3.3 Hill48降伏関数に基づく関連流れ則 3.4 変形の異方性による異方性パラメータの決定法 3.5 変形の異方性と降伏条件(応力)の異方性 3.6 Hill48降伏関数・塑性ポテンシャル関数に基づく非関連流れ則 4.バウシンガ効果と移動硬化 4.1 バウシンガ効果と降伏曲面 4.2 背応力の発展についてのChabocheのモデル 4.3 複合硬化の構成式の導出 5.塑性学のマルチスケール 5.1 延性材料の応力―ひずみ曲線 5.2 転位の動力学 1. Introduction to plastic deformation of metallic materials 1.1 Deformation of metallic materials under uniaxial tension and compression 1.2 Stress, strain and strain increments suitable for large deformation 1.3 Formularization of stress-strain curves 1.4 Incompressibility of plastic deformation, slip, motion of dislocations, and Schmid factor 2. Plasticity 2.1 Framework of plasticity, Cauchy’s relation 2.2 Strain increment for three-dimensional deformation 2.3 Equation for eigenvalue problem 2.4 Deviatoric stress 2.5 General and concrete form of yield condition 2.6 Yield function, yield locus and normality 2.7 Work hardening rule, flow rule and plastic potential 2.8 Constitutive equation for rigid-plastic body 2.9 Decomposition of deformation gradient, and constitutive equation for isotropic elastic-plastic bodies 3. Plastic anisotropy 3.1 In-plane anisotropy and two methods for determining anisotropic parameters 3.2 Example of anisotropic yield function (Hill48) 3.3 Associated flow rule based on Hill48 yield function 3.4 Method to anisotropic determine parameters for deformation anisotropy 3.5 Deformation anisotropy and anisotropy of stress, and yield function 3.6 Non-associated flow rule based on Hill48 yield function and plastic potential function 4. Baushinger effect and kinetic hardening 4.1 Baushinger effect and yield locus 4.2 Chaboche model for the evolution of back stress 4.3 Constitutive equation for mixed hardening 5. Multi-scale in plasticity 5.1 Stress-strain curves in ductile materials 5.2 Dislocation dynamics
成績評価方法
出席とレポートにて採点する
履修上の注意
視野を広げる
その他
前提となる知識と項目:材料力学/Strength of Materials 弾性学/Solid Mechanics 1 : Elasticity 事前履修:弾性学/Solid Mechanics 1 : Elasticity,材料力学/Strength of Materials