学部後期課程
HOME 学部後期課程 計算数理
過去(2022年度)の授業の情報です
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2023年10月20日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

計算数理

数値解析入門 Introduction to Numerical Analysis
線形代数学では、正則な行列を係数行列とする連立一次方程式は、一意な解を持ち、それはクラメールの公式を用いて表現できることを学んだ。しかし、もし、クラメールの公式をそのまま用いて、未知数が30個の連立一次方程式を解こうとすれば、現在利用できる最も速いスーパーコンピュータを用いても、100億年以上かかる見積もりになってしまい、現実的でない。一方、それをガウスの消去法で求めれば、手頃なラップトップ型パーソナルコンピュータを用いても、 1/100秒もかからない。このように、数学的に解が表現できる、あるいは解が存在するということと、実際に数値を得ることの間には、大きな溝があるのである。数学的な概念や方法を通じて、現実問題を研究する際には、当然、数値的な答えが要求される。そのような問題に対処するために、様々な数学的な概念を、具体的に数値を計算するという立場から研究する分野を数値解析と言う。本講義は、数値解析への入門を目的とし、1年および2年次に学んだ微分積分学や線形代数学に現れる諸問題、例えば、連立一次方程式、非線形方程式、定積分、常微分方程式、最適化(関数の最小化)などを、コンピュータを用いて数値的に解くための方法とその背景にある数学理論の解説を行う。
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
08E1025
FAS-EA3B26L1
計算数理
齊藤 宣一
S1 S2
金曜2限
マイリストに追加
マイリストから削除
講義使用言語
日本語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
開講所属
教養学部
授業計画
1. 数値計算と数学,計算機における数の表現 2. 非線形方程式:Newton法 3. 非線形方程式:多変数Newton法と代数方程式 4. 行列のノルム 5. 固有値問題:固有値の包み込みとRayleigh商 6. 固有値問題:冪乗法,逆反復法,シフト法 7. 補間多項式と数値積分:Lagrange補間多項式とNewton-Cotes積分公式 8. 補間多項式と数値積分:直交多項式とGauss型積分公式 9. 常微分方程式:Euler法と一段法 10. 常微分方程式:Runge-Kutta法 11. 常微分方程式:連立系への適用 12. 関数の最良近似 13. 無制約最適化とその応用
授業の方法
本講義は、数理科学研究科棟での、対面・オンライン併用型A(総時間数の半数以上を対面で実施)での開講を予定しています。 第1回(4月8日)は、オンライン(オンデマンド方式)で行います。 第2回目以降(4月15日〜)は、教室での講義を行います。 第2回目以降は、受講生は、教室に来て対面方式で講義を受けることを原則とします。一方で、講義の全回数分のオンライン(オンデマンド方式)教材の用意もします。したがって、本講義をオンライン講義として受講することも可能です。 対面で講義を受ける受講生も、ITC-LMSで、オンライン講義用の教材を参照することが可能です。また、講義の時間帯以外に、講義slackで質問ができます。 講義を、(Zoomなどで)リアルタイムのストリーミング配信することはしません。
成績評価方法
レポート(当初「試験」とアナウンスしていましたが、変更しました)
教科書
指定しない
参考書
1. 齊藤宣一:数値解析入門 (大学数学の入門9),東京大学出版会,2012年 2. 齊藤宣一:数値解析 (共立講座数学探求),共立出版,2017年 3. A. Quarteroni, F. Saleri, P. Gervasio:Scientific Computing with MATLAB and Octave, 4th edit., Springer, 2014(加古孝,千葉文浩訳,MATLABとOctaveによる科学技術計算,丸善出版,2014年)
履修上の注意
(1)計算数理演習も併せて履修することが望ましい. (2)「計算数理I(理学部数学科)」と「計算数理(教養学部統合自然科学科)」は合同授業です.
その他
2020年度の計算数理I・計算数理についてのインタビュー記事が、東京大学オンライン授業・Web会議 ポータルサイト のグッドプラクティスの共有に掲載されましたので、参考にして下さい。 https://utelecon.github.io/*****