1.混合物の熱力学的取り扱い
(部分モル量、希薄溶液、ヘンリーの法則、混合液体、束一的性質、沸点上昇と凝固点降下、溶解度、浸透圧、実在溶液と活量)
2.相平衡と相転移
(緒言、相の安定性(一成分系)、相平衡の表し方、エーレンフェストによる相転移の分類、λ転移、ランダウ理論、2次相転移のランダウ理論、スピンクロスオーバー現象、スリクター・ドリッカマーズ理論)
3.統計熱力学
(緒言、量子論的調和振動子、量子論的並進運動、三次元で自由に運動している場合、量子論的回転運動、分配関数と内部エネルギーとの関係、統計エントロピーと分子分配関数の関係、2準位系の場合のEとS、カノニカル分配関数、結晶固体、量子統計、超流動)
4.平衡電気化学
(溶液中のイオンの熱力学的性質、デバイ-ヒュッケルの極限法則、化学電池、電池電位、ネルンストの式)
1. Thermodynamic description of mixtures
(Partial molar quantities, Dilute solution, Henry’s law, Liquid mixtures, Colligative properties, Boiling point elevation and freezing point depression, Solubility, Osmosis, Real solutions and activity)
2. Phase stability and phase transitions
(Introduction, Phase stabilities (One-component systems), Expression of phase equilibrium, Ehrenfest classification of phase transitions, λ-transition, Landau theory, Landau theory of second-order phase transition, Spin-crossover phenomenon, Slichter-Drickamer model)
3. Statistical thermodynamics
(Introduction, Quantum harmonic oscillator, Quantum translational motion, Three dimensional free motion, Quantum rotational motion, Relation between the partition function and the internal energy, Relation between statistical entropy and molecular partition function, The E and S in two level system, Canonical partition function, Crystalline solids, Quantum statistics, Superfluidity)
4. Equilibrium electrochemistry
(Thermodynamic properties of ions in solution, The Debye-Hückel’s limiting law, Chemical cells, Cell potential, Nernst equation)