学部後期課程
HOME 学部後期課程 Quantum Chemistry I (GSC)
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年4月22日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

Quantum Chemistry I (GSC)

Quantum Chemistry I
In this course, attendees can learn basic principles of quantum mechanics through a variety of examples in atomic physics and molecular science. They learn about a particle in a box from optical transitions of dye molecules, harmonic oscillators from vibrational spectra of molecules, angular momenta from rotational spectra of molecules, and a hydrogen atom from its atomic spectra.
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
0530003-GSC
FSC-CH2103L3
Quantum Chemistry I (GSC)
岩崎 純史
A1 A2
水曜1限
マイリストに追加
マイリストから削除
講義使用言語
英語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
不可
開講所属
理学部
授業計画
Lecture schedule 1st 10/2 lecture 2nd 10/9 lecture 3rd 10/16 lecture 4th 10/23 lecture 5th 10/30 lecture 6th 11/6 lecture 7th 11/20 lecture 8th 12/4 lecture 9th 12/11 lecture 10th 12/18 lecture 11th 12/25 lecture 12th 1/8 lecture 13th 1/15 lecture 14th 1/22 final exam Course syllabus: 1. Introduction - Energy and geometrical structure of molecules 1.1. Absorption and emission of light by dye molecules 1.2. Infrared radiation from the Earth 1.3. Microwave arriving from outer space 1.4. The hierarchical structure of molecular energy levels 1.5. The diffraction of electron beams and molecular structure 1.6. Solving Schrödinger’s equation - One-dimensional problem 1.7. Determination of the size of β-carotene molecule 2. Vibrating molecules 2.1. Quantum theory of molecular vibration 2.2. Morse oscillator 2.3. Schrödinger’s equation of a one-dimensional harmonic oscillator 2.4. Parity of the eigenfunctions of HO 2.5. Eigenfunctions of HO 2.6. Matrix elements 2.7. Selection rule and overtone transitions 2.8. Hermite operators 2.9. Creation and annihilation operators 2.10. First-order perturbation theory 2.11. Example of the first order perturbation theory 2.12. Hamiltonian matrix and its diagonalization 2.13. Inversion motion of ammonia and its double minimum potential 2.14. Far-infrared spectrum of cyclopentene 2.15. Morse oscillator 2.16. Birge-Sponer plot 2.17. Vibrational degrees of freedom 2.18. Normal mode vibration 2.19. Anharmonic couplings 3. Rotating molecules 3.1. Representation of Laplacian in spherical coordinate system 3.2. Rotational energy of diatomic molecules 3.3. Rotational constant 3.4. Determination of the internuclear distance 3.5. Rotational Spectra of diatomic molecules 3.6. Angular momentum operators 3.7. Commutation relations 3.8. Eigenvalues of angular momentum operators 3.9. Eigenfunctions of angular momentum operators 3.10. Determination of the rotational constants of H^35Cl and H^37Cl 3.11. Isotope shift in the fundamental vibrational transition of HCl 4. Electronic structure of a hydrogen atom 4.1. Emission lines of hydrogen atoms 4.2. Radial wave functions of a hydrogen atom 4.3. Another approach for solving the radial Schrödinger equation 4.4. Radial wave functions of a hydrogen atom derived by the lowering operator 4.5. Derivation of the ionization potential of a hydrogen atom 4.6. Angular parts of the wave functions of a hydrogen atom
授業の方法
Lectures will be given using Power point slides. The slides will be distributed through ITC-LMS. Attendees are strongly encourage to participate in the lectures by asking questions or giving comments about the lecture materials. Report assignments will be assigned occasionally. The final exam will be given at the end of the course.
成績評価方法
Grading is based on the final exam scores, report assignments, your contributions to the lectures.
教科書
Handouts will be distributed in each lecture.
参考書
“Quantum Mechanics of Molecular Structures” by K. Yamanouchi (Springer). “Molecular Quantum Mechanics” by P. W. Atkins and R. S. Friedman (Oxford University Press)
履修上の注意
None.