大学院
HOME 大学院 国際連携特別講義V
過去(2019年度)の授業の情報です
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年4月22日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

国際連携特別講義V

2019年度 SNUとの短期集中コースプログラム
Short Intensive Course Program between School of Engineering, the University of Tokyo and College of Engineering, Seoul National University

The purpose of this course program is to develop academic and educational cooperation on the basis of equality and reciprocity between both institutions and to internationalize curricula and student experiences.
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
3799-299
GEN-CO6x24L3
国際連携特別講義V
各教員
A1 A2
集中
マイリストに追加
マイリストから削除
講義使用言語
英語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
開講所属
工学系研究科
授業計画
Title of the Lecture: Introduction to Atomistic Simulations for Nuclear Engineering (原子力工学のための原子シミュレーション入門) Date: 4 days (Feb. 10-14, 2020) 2/10 10:00-12:00, 13:00-17:00 2/12 10:00-12:00, 14:00-17:00 2/13 10:00-12:00, 14:00-17:00 2/14 10:00-12:00, 14:00-17:00 Overview: # Overview Computer simulations are essential tools for nuclear engineering, such as neutron transport calculations, heat transfer calculations, structural mechanics calculations, reactor physics design, etc. In addition to these applications, atomistic simulations have been attracting increasing attention, which help our understanding of fundamental processes involved in radiation effects on material properties, water chemistry, radionuclide transport, etc. Atomistic simulations are also used to develop new materials, thanks to the advancement in computer sciences including machine learning. In this course, for students who have no/little experience in the atomistic simulations but are interested in future application in a research, basic theories and how-tos of atomistic simulations are provided through lectures and practices. In this course, we mainly learn molecular statics/dynamics calculation and first-principles calculation as atomistic simulation methods, and use them for solid materials in practices, although acquired knowledge/skills would be applied to liquid, solution, molecules, etc. Upon completion of this course, the students will be able to (1) read and understand basic contents of research papers using atomistic simulations, (2) design a research using atomistic simulations, and (3) start preliminary studies using atomistic simulations. Schedule: 1) Lecture-1: Introduction 2) Lecture-2: Preparation of structure file for simulation; symmetry operation and space group 3) Lecture-3: Basics of geometry optimization; basics of molecular statics calculation 4) Practice-1: Geometry optimization and calculation of cohesive energy (how to use a molecular statics code) 5) Lecture-4: Basics of mechanical property of materials 6) Lecture-5: Strain-stress relations and relations among elastic constants 7) Lecture-6: Basics of molecular dynamics calculation 8) Practice-2: Elastic constant calculation including its temperature dependence (hot to use a molecular dynamics code) 9) Lecture-7: Basics of potential models for molecular statics/dynamics 10) Lecture-8: Basics of density functional theory for quantum mechanical calculations 11) Lecture-9: Concepts of reciprocal space samplings-1 12) Lecture-10: Concepts of reciprocal space samplings-2 13) Practice-3: Calculation of cohesive energy and elastic constants with quantum mechanical calculation (how to use a first-principles calculation code) 14) Lecture-11: Basics of lattice defects 15) Practice-4: Defect energy calculation and visualization 16) Lecture-12: Thermodynamics of defects, temperature dependence of defect concentration 17) Lecture-13: Thermodynamics of crystals-1 18) Lecture-14: Thermodynamics of crystals-2 19) Practice-5: Calculation of thermodynamic quantities (enthalpy, Gibbs energy, etc) of crystals 20) Practice-6: Phase transition of material: solid to liquid 21) Lecture-15: Transport properties: diffusion coefficient 22) Practice-7: Diffusion coefficient calculation 23) Lecture-16: Basics of reaction kinetics 24) Practice-8: Calculation of reaction rate 25) Lecture-17: Conclusion
成績評価方法
Examination
履修上の注意
基礎を固める(工学部共通)
その他
前提となる知識と項目:Prerequisites: Basic skills of Linux needed to run computer simulations and read output files, including how to use vi editor, are required. Students who do not have such skills must self-study it using provided materials before the start of the course. In addition, although not prerequisites, basic knowledge on thermodynamics (definitions and concepts of entropy, free energy, etc) and mathematics (ordinary differential equations including systems of differential equations, eigenvalue problems, function analysis) would largely help your understanding.