学部後期課程
HOME 学部後期課程 環境測定法I
過去(2022年度)の授業の情報です
学内のオンライン授業の情報漏洩防止のため,URLやアカウント、教室の記載は削除しております。
最終更新日:2024年4月1日

授業計画や教室は変更となる可能性があるため、必ずUTASで最新の情報を確認して下さい。
UTASにアクセスできない方は、担当教員または部局教務へお問い合わせ下さい。

環境測定法I

Environmental Measurement and Evaluation
The primary goal of the course is to provide students with an integrated view of how the basic concepts of mathematics and physics are applied to collecting information about a system. Upon successful completion of this course, the student will have:
-acquired a basic knowledge of the physics of information,
-gained an understanding of the physical principles of a broad range of modern sensors,
-developed skills in data analysis and system modeling.
MIMA Search
時間割/共通科目コード
コース名
教員
学期
時限
08D1421
FAS-DA4F21L3
環境測定法I
ドロネー ジャン ジャック
S1
火曜2限、金曜2限
マイリストに追加
マイリストから削除
講義使用言語
英語
単位
2
実務経験のある教員による授業科目
NO
他学部履修
開講所属
教養学部
授業計画
Outline Introduction to course Course goal and outline, class schedule, assignments and exams. Introduction to information theory and statistics -Introduction to information theory: information, binary choices, probability, entropy [bit], information transmission rate, sensor, calibration, signal vs. message, code, sampling, noise sources, effect of noise, channel capacity, noise can be helpful! (dithering) -Measurement errors and uncertainties: measurement, true value, random and systematic errors, uncertainty due to random errors, uncertainty due to systematic errors, total uncertainty, propagation of uncertainties, combination of separate measurements, correlation and regression -Examples and case studies: sensor fusion, rejection of data, error analysis in flow measurement (ASME standard on measurement uncertainty), stochastic resonance in natural systems Instrument and measurement -Sensor characteristics: transfer function, sensitivity, dynamic range, uncertainty, sensor classification -Dielectric materials for sensing: capacitive sensors, piezoelectric effect, piezoelectric crystal resonator -Optical fundamentals: wavefront, image quality (aberration, diffraction) -Optical microscopy: Kohler illumination, bright and dark fields, phase-shift microscopy (Zernike), differential interference contrast, fluorescence microscopy, confocal microscopy -Interferometry: Maxwell’s equations, interferometers (Michelson, Mach-Zender, Fabry-Perot), Fourier transform infrared spectrometer (case study), problems -Holography: scalar diffraction theory, wavefront reconstruction, in-line hologram (Gabor), off-axis hologram (Leith), Fourier hologram, applications -Light sensors: light interaction with matter, phototubes, photoresistors, p-n junction, p-i-n junction, metal-semiconductor junction -Magnetic sensors: spin, magnetic moment, diamagnetism, paramagnetism, ferromagnetism, Hall’s effect, magnetoresistance effects -Surface-plasmon-resonance based sensors: optical properties of metal, evanescent fields, surface plasmon resonance, bio-sensors Data analysis and modeling Signal processing: Fourier transform, sampling theorem, data pre-processing; Case study: lock-in amplification, zero padding Time series modeling: stationarity, autoregressive average models, nearest neighbor models, neural network models
授業の方法
PowerPoint slides are used in most lectures and made available in the ITC-LMS system.
成績評価方法
Homework assignments to be submitted using the ITC-LMS system.
教科書
J. R. Taylor, An introduction to error analysis, University Science Books, 1997. J. Fraden, Handbook of modern sensors, AIP press, Springer, 2003. R. Figliola, D. Beasley, Theory and design for mechanical measurements, Wiley, 2006
参考書
The lecture slides are available in the ITC-LMS system.
履修上の注意
none.